

www.maven-silicon.com

Design Approaches and Architectures of RISC-V SoCs

Author: P R Sivakumar, Founder and CEO, Maven Silicon

We design different kinds of System-on-Chips (SoCs/Chips) tailored for different electronic products. Let’s

explore how we approach designing various electronic products like embedded microcontrollers, smartphones,

Linux servers, and cloud servers.

Usually, we prefer the 32-bit embedded compressed version of RISC-V Base ISA, called RV32EC, for embedded

microcontrollers that we use in coffee machines, fitness bands, and other similar applications. We might prefer

bare-metal or RTOS (Real-Time Operating System) for such simple microcontrollers. Some of them could be

real-time systems like automotive chips that demand real-time processing without any delay. Obviously, we prefer

bare-metal coding (physical addressing) for such real-time software applications instead of using an operating

system (OS – virtual addressing) like Linux. A bare-metal software application directly runs on the processor

following physical addressing with RAM. As the OS follows virtual addressing with the RAM for virtual memory

management, it’s time-consuming. But we prefer OS for executing and managing multiple applications (hundreds

or thousands or millions of threads) in parallel - for products like desktops and servers.

Similarly, we prefer a high-performance multicore RISC-V processor like RISC-V RV64G for a smartphone that

demands a complex 64-bit SoC - runs a 64-bit OS like iOS/Android. RV64G is based on the 64-bit Base ISA,

called RV64I, which supports 64-bit OSes for smartphones and desktops. G means General Purpose. It includes

all the standard extensions: IMFD&A. You can refer to my RISC-V ISA Overview YouTube Video to explore

the RISC-V ISA, unprivileged and privileged architectures.

The complexity of the chip and software varies based on the complexity of the product. RISC-V ISA offers various

base ISAs - RV32I, RV32E, RV64I, and RV128I to support 32/64/128-bit Oses, and extensions IMFDA, etc., to

design different kinds of SoCs for various products like embedded microcontrollers, smartphones, Linux servers,

and cloud servers.

Let me explain how we approach creating bare-metal and OS-based applications with two good examples –

RISC-V 32-bit SoC and RISC-V 64-bit SoC.

RISC-V 32-bit SoC – Embedded Microcontroller

As shown in the figure, we follow a 32-bit memory map to design 32-bit SoCs.

https://www.maven-silicon.com/
https://www.linkedin.com/in/sivapr/
https://www.youtube.com/watch?v=znr4UqI5TDY&list=PL3_RRtJ5Iqgg94er7ErGAUSyhTXwPv6zy

www.maven-silicon.com

At present, RISC-V does not define or offer any standard memory map framework to design SoCs, but you can

expect it from RISC-V International in the future. As there is no standard framework, different vendors follow

different memory maps for their chips.

Let’s understand the 32-bit memory map shown above. We design a chip with 4GB address space for the bare-

metal coding. Within 4GB, we map everything: ROM, I/Os, SRAM, DRAM, external memories, etc., as shown

in the figure. In this case, you can have only limited DRAM (2 to 3 GB), as we need a minimum of 1 GB for other

components like ROM and I/O interfaces. The bare-metal software application will follow physical addressing

with RAM. Usually, we follow this framework and approach for designing 32-bit embedded microcontrollers.

RISC-V ISA also offers Sv32 address translation to realize 32-bit systems with a 32-bit OS. The Sv32 address

translation scheme generates a 32-bit virtual address with 4GB of virtual address space and a 34 bits physical

address with 16GB of physical address space. Now, with this 16GB address space, we can comfortably increase

RAM, ROM, and I/Os. This explains how we usually scale up a hardware system even with 32-bit RISC-V chips.

Still, 4GB of virtual address space is limited for desktop/server OS and applications.

Also, general purpose 32-bit operating systems struggle to manage bigger DRAM chips. A 32-bit OS kernel can

comfortably manage a DRAM chip of maximum size 32GB; hence, we prefer 64-bit operating systems on 64-bit

SoCs. So, let’s explore the 64-bit memory map.

RISC-V 64-bit SoC – Desktop and Server Chips

As shown in the figure, we follow a 36-bit memory map to design 64-bit SoCs.

Using 36 bits (address bus), we can design a 64-bit SoC comfortably with all I/O interfaces, controllers, and

memories within a 64GB address space. This allows us to expand the DRAM more than 30 to 40 GB and realize

any kind of bare-metal complex embedded and OS-based desktop applications.

Usually, we prefer a 36/40-bit memory map to design 64-bit RISC-V SoCs, rather than simply using a 64-bit

address space (address bus). Also, RISC-V offers various address translation schemes - Sv39, Sv48, Sv57, and

Sv64 - to increase the virtual and physical address space for 64-bit SoCs, as shown below.

https://www.maven-silicon.com/

www.maven-silicon.com

Let’s explore the RISC-V Sv39 address translation scheme on a 64-bit RISC-V SoC.

The Sv39 address translation scheme generates a 39-bit virtual address with 512GB of virtual address space for

software applications and a 56-bit physical address with 64PB of physical address space, as shown above. The

32-bit memory map is always a subset of the 36/40-bit memory map for backward compatibility—porting 32-bit

software (OSes, bootloaders & drivers) to 64-bit systems. Generally, the firmware, bootloaders and test codes are

32-bit software even for 64-bit SoCs. It executes without MMUs; hence all peripherals must be implemented

within the physical address space - following physical addressing, as shown in the above figure.

Innovating high-performance electronic products requires more than just creativity - it demands a deep

understanding of design approaches like 32-bit and 64-bit SoCs, along with modern system-level design strategies.

System level designers must know the nuts and bolts of processor technologies like RISC-V ISA, and SoC and

Software design methodologies as well.

Our RISC-V Powered Executive MTech VLSI Design course empowers system designers with essential

knowledge of RISC-V ISA, SoC architecture, and software design methodologies - building the foundation to

create the next generation of smart, scalable systems.

https://www.maven-silicon.com/
https://www.maven-silicon.com/mtech-in-vlsi-design/

